A Combinatorial Interpretation for a Super-Catalan Recurrence

نویسندگان

  • DAVID CALLAN
  • Kristin Schleich
چکیده

Nicholas Pippenger and Kristin Schleich have recently given a combinatorial interpretation for the second-order super-Catalan numbers (un)n 0 = (3; 2; 3; 6; 14; 36; :::): they count \aligned cubic trees" on n internal vertices. Here we give a combinatorial interpretation of the recurrence un = Pn=2 1 k=0 n 2 2k 2 2 uk : it counts these trees by number of deep interior vertices where deep interior means \neither a leaf nor adjacent to a leaf".

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE SUPER CATALAN NUMBERS S(m,m+ s) FOR s ≤ 3 AND SOME INTEGER FACTORIAL RATIOS

We give a combinatorial interpretation for the super Catalan number S(m,m + s) for s ≤ 3 using lattice paths and make an attempt at a combinatorial interpretation for s = 4. We also examine the integrality of some factorial ratios.

متن کامل

A Combinatorial Interpretation of the Catalan and Bell Number Difference Tables

We study the recurrence relations and derive the generating functions of the entries along the rows and diagonals of the Catalan and Bell number difference tables. – In Memory of Professor Herb Wilf

متن کامل

Combinatorics of Generalized Motzkin Numbers

The generalized Motzkin numbers are common generalizations of the Motzkin numbers and the Catalan numbers. We investigate their combinatorial properties, including the combinatorial interpretation, the recurrence relation, the binomial transform, the Hankel transform, the log-convexity, the continued fraction of the generating function, and the total positivity of the corresponding Hankel matrix.

متن کامل

A Combinatorial Interpretation of the Eigensequence for Composition

The monic sequence that shifts left under convolution with itself is the Catalan numbers with 130+ combinatorial interpretations. Here we establish a combinatorial interpretation for the monic sequence that shifts left under composition: it counts permutations that contain a 3241 pattern only as part of a 35241 pattern. We give two recurrences, the first allowing relatively fast computation, th...

متن کامل

Elements of the sets enumerated by super-Catalan numbers

As we know several people tried to get many structures for fine numbers (see [31, Sequence A000957]), while others on Catalan numbers (see [31, Sequence A000108]). Stanley [34,35] gave more than 130 Catalan structures while Deutsch and Shapiro [11] also discovered many settings for the Fine numbers. The structures for Fine numbers and Catalan numbers are intimately related from the list of Fine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004